Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407259

RESUMO

Enterobacteriaceae produce an arsenal of antimicrobial compounds including microcins, ribosomally produced antimicrobial peptides showing diverse structures and mechanisms of action. Microcins target close relatives of the producing strain to promote its survival. Their narrow spectrum of antibacterial activity makes them a promising alternative to conventional antibiotics, as it should decrease the probability of resistance dissemination and collateral damage to the host's microbiota. To assess the therapeutic potential of microcins, there is a need to understand the mechanisms of resistance to these molecules. In this study, we performed genomic analyses of the resistance to four microcins [microcin C, a nucleotide peptide; microcin J25, a lasso peptide; microcin B17, a linear azol(in)e-containing peptide; and microcin E492, a siderophore peptide] on a collection of 54 Enterobacteriaceae from three species: Escherichia coli, Salmonella enterica and Klebsiella pneumoniae. A gene-targeted analysis revealed that about half of the microcin-resistant strains presented mutations of genes involved in the microcin mechanism of action, especially those involved in their uptake (fhuA, fepA, cirA and ompF). A genome-wide association study did not reveal any significant correlations, yet relevant genetic elements were associated with microcin resistance. These were involved in stress responses, biofilm formation, transport systems and acquisition of immunity genes. Additionally, microcin-resistant strains exhibited several mutations within genes involved in specific metabolic pathways, especially for S. enterica and K. pneumoniae.


Assuntos
Bacteriocinas , Estudo de Associação Genômica Ampla , Bacteriocinas/genética , Antibacterianos/farmacologia , Imunidade Inata , Enterobacteriaceae/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Peptídeos
2.
Nat Prod Rep ; 41(3): 469-511, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38164764

RESUMO

Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.


Assuntos
Antibacterianos , Bacteriocinas , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Bacteriocinas/química , Peptídeos/farmacologia , Peptídeos/química , Bactérias
3.
R Soc Open Sci ; 10(11): 231002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026023

RESUMO

We report the first large-scale palaeoproteomics research on eastern and southern African zooarchaeological samples, thereby refining our understanding of early caprine (sheep and goat) pastoralism in Africa. Assessing caprine introductions is a complicated task because of their skeletal similarity to endemic wild bovid species and the sparse and fragmentary state of relevant archaeological remains. Palaeoproteomics has previously proved effective in clarifying species attributions in African zooarchaeological materials, but few comparative protein sequences of wild bovid species have been available. Using newly generated type I collagen sequences for wild species, as well as previously published sequences, we assess species attributions for elements originally identified as caprine or 'unidentifiable bovid' from 17 eastern and southern African sites that span seven millennia. We identified over 70% of the archaeological remains and the direct radiocarbon dating of domesticate specimens allows refinement of the chronology of caprine presence in both African regions. These results thus confirm earlier occurrences in eastern Africa and the systematic association of domesticated caprines with wild bovids at all archaeological sites. The combined biomolecular approach highlights repeatability and accuracy of the methods for conclusive contribution in species attribution of archaeological remains in dry African environments.

4.
Front Microbiol ; 13: 930392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992668

RESUMO

The increased prevalence of Salmonella spp. resistance in swine spurs the search for alternatives to antibiotics. Microcin J25 (MccJ25), a bacteriocin produced by Escherichia coli, is a potent inhibitor of several pathogenic bacteria including Salmonella enterica. In this study, we aimed to evaluate in vitro the impact of MccJ25 on the composition and the metabolic activity of the swine colonic microbiota. The PolyFermS in vitro continuous fermentation model was used here with modified Macfarlane medium to simulate the porcine proximal colon. During 35 days of fermentation, a first-stage reactor containing immobilized swine fecal microbiota fed two second-stage control and test reactors operated in parallel and used to test the effects of MccJ25 on the composition and the metabolic activity of the microbiota. Reuterin, a broad-spectrum antimicrobial compound produced by Limosilactobacillus reuteri, a lactic acid bacterium naturally present in the gastro-intestinal tract of human and animals, and the antibiotic rifampicin were tested for comparison. Sequencing of 16S rRNA was performed using the Illumina MiSeq technology to evaluate microbial diversity, and liquid chromatography coupled to mass spectrometry (LC-MS) followed by multivariate analysis was used to assess the bacteriocin/antibiotic degradation products and to monitor changes in the swine colonic microbiota metabolome. The results show that MccJ25 or reuterin treatments only induce subtle changes of both the microbial diversity and the metabolome of the swine colon microbiota, while rifampicin induces significant modification in amino acid levels. Although these findings need being validated in vivo, this study affords a first proof of concept for considering MccJ25 as a possible alternative to antibiotics for veterinary and farming applications, taking into account its pathogen-selective and potent inhibitory activity.

5.
Microbiol Spectr ; 10(3): e0275221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35543514

RESUMO

The advent of multidrug-resistant bacteria has hampered the development of new antibiotics, exacerbating their morbidity and mortality. In this context, the gastrointestinal tract reveals a valuable source of novel antimicrobials. Microcins are bacteriocins produced by members of the family Enterobacteriaceae, which are endowed with a wide diversity of structures and mechanisms of action, and exert potent antibacterial activity against closely related bacteria. In this study, we investigated the antibacterial activities of four microcins against 54 Enterobacteriaceae isolates from three species (Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica). The selected microcins, microcin C (McC, nucleotide peptide), microcin J25 (MccJ25, lasso peptide), microcin B17 (MccB17, linear azol(in)e-containing peptide), and microcin E492 (MccE492, siderophore peptide) carry different post-translational modifications and have distinct mechanisms of action. MICs and minimal bactericidal concentrations (MBC) of the microcins were measured and the efficacy of combinations of the microcins together or with antibiotics was assessed to identify potential synergies. Every isolate showed sensitivity to at least one microcin with MIC values ranging between 0.02 µM and 42.5 µM. Among the microcins tested, McC exhibited the broadest spectrum of inhibition with 46 strains inhibited, closely followed by MccE492 with 38 strains inhibited, while MccJ25 showed the highest activity. In general, microcin activity was observed to be independent of antibiotic resistance profile and strain genus. Of the 42 tested combinations, 20 provided enhanced activity (18 out of 20 being microcin-antibiotic combinations), with two being synergetic. IMPORTANCE With their wide range of structures and mechanisms of action, microcins are shown to exert antibacterial activities against Enterobacteriaceae resistant to antibiotics together with synergies with antibiotics and in particular colistin.


Assuntos
Bacteriocinas , Enterobacteriaceae , Sequência de Aminoácidos , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli , Peptídeos/química
6.
J Anim Sci Biotechnol ; 13(1): 34, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246239

RESUMO

BACKGROUND: Since the overuse of antibiotics in animal production has led to a selection of antibiotic-resistant pathogens that affect humans and animals as well. Scientists are therefore searching for novel natural alternatives to antibiotics. In this study Lactobacillus reuteri and a combination of reuterin and microcin J25 (RJ) were evaluated as promoters of growth and modulators of the cecal microbiota and metabolite profiles in broiler chickens. One-day-old Cobb 500 male broilers were distributed to 8 treatments: negative control (without antibiotic), positive control (bacitracin), three concentrations of RJ and three doses of L. reuteri plus glycerol. The birds (2176, 34 per pen, 8 pens per treatment) were reared for 35 d. RESULTS: The body weight of the bacitracin and 5 mmol/L reuterin combined with 0.08 µmol/L microcin J25 (10RJ) treatment group was significantly higher than that of the negative control group (P < 0.05). L. reuteri had no significant effect on broiler growth. MiSeq high-throughput sequencing of 16S rRNA showed clustering of cecal microbial operational taxonomic unit diversity according to treatment. The influence of bacitracin and 10RJ on bacterial community overall structure was similar. They promoted Ruminococcaceae, Lachnospiraceae and Lactobacillaceae, increased the relative abundance of Faecalibacterium and decreased the abundance of Bacteroides and Alistipes, while the negative control condition favored Bacteroidaceae and Rikenellaceae. Furthermore, 10RJ increased the concentration of short-chain fatty acid in the cecum and changed the metabolome overall. CONCLUSIONS: These overall suggest that 10RJ can promote a host-friendly gut environment by changing the cecal microbiome and metabolome. This combination of natural antimicrobial agents in the drinking water had a positive effect on broiler growth and may be suitable as an alternative to antibiotic growth promoters.

7.
Front Microbiol ; 13: 1075274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36875534

RESUMO

Halophilic microorganisms have long been known to survive within the brine inclusions of salt crystals, as evidenced by the change in color for salt crystals containing pigmented halophiles. However, the molecular mechanisms allowing this survival has remained an open question for decades. While protocols for the surface sterilization of halite (NaCl) have enabled isolation of cells and DNA from within halite brine inclusions, "-omics" based approaches have faced two main technical challenges: (1) removal of all contaminating organic biomolecules (including proteins) from halite surfaces, and (2) performing selective biomolecule extractions directly from cells contained within halite brine inclusions with sufficient speed to avoid modifications in gene expression during extraction. In this study, we tested different methods to resolve these two technical challenges. Following this method development, we then applied the optimized methods to perform the first examination of the early acclimation of a model haloarchaeon (Halobacterium salinarum NRC-1) to halite brine inclusions. Examinations of the proteome of Halobacterium cells two months post-evaporation revealed a high degree of similarity with stationary phase liquid cultures, but with a sharp down-regulation of ribosomal proteins. While proteins for central metabolism were part of the shared proteome between liquid cultures and halite brine inclusions, proteins involved in cell mobility (archaellum, gas vesicles) were either absent or less abundant in halite samples. Proteins unique to cells within brine inclusions included transporters, suggesting modified interactions between cells and the surrounding brine inclusion microenvironment. The methods and hypotheses presented here enable future studies of the survival of halophiles in both culture model and natural halite systems.

8.
Front Microbiol ; 12: 780355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145490

RESUMO

Bacteriocins are receiving increased attention as potent candidates in food preservation and medicine. Although the inhibitory activity of bacteriocins has been studied widely, little is known about their gastrointestinal stability and toxicity toward normal human cell lines. The aim of this study was to evaluate the gastrointestinal stability and activity of microcin J25, pediocin PA-1, bactofencin A and nisin using in vitro models. In addition cytotoxicity and hemolytic activity of these bacteriocins were investigated on human epithelial colorectal adenocarcinoma cells (Caco-2) and rat erythrocytes, respectively. Pediocin PA-1, bactofencin A, and nisin were observed to lose their stability while passing through the gastrointestinal tract, while microcin J25 is only partially degraded. Besides, selected bacteriocins were not toxic to Caco-2 cells, and integrity of cell membrane was observed to remain unaffected in presence of these bacteriocins at concentrations up to 400 µg/mL. In hemolysis study, pediocin PA-1, bactofencin A, and nisin were observed to lyse rat erythrocytes at concentrations higher than 50 µg/mL, while microcin J25 showed no effect on these cells. According to data indicating gastrointestinal degradation and the absence of toxicity of pediocin PA-1, bactofencin A, and microcin J25 they could potentially be used in food or clinical applications.

9.
J Proteomics ; 231: 104040, 2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33152504

RESUMO

The proteomic analysis of hairs, yarns or textiles has emerged as a powerful method to determine species of origin, mainly used in archaeozoological research and fraud control. Differentiation between the South American camelid (SAC) species (the wild guanaco and vicuña and their respective domesticates the llama and alpaca) is particularly challenging due to poor database information and significant hybridization between species. In this study, we analysed 41 modern and 4 archaeological samples from the four SACs species. Despite strong similarities with Old World Camelidae, we identified 7 peptides specific to SACs assigned to keratin K86 and the keratin-associated proteins KAP13-1 and KAP11-1. Untargeted multivariate analysis of the LC-MS data permitted to distinguish SAC species and propose discriminant features. MS/MS-based molecular networking combined with database-assisted de novo sequencing permitted to identify 5 new taxonomic peptides assigned to K33a, K81 and/or K83 keratins and KAP19-1. These peptides differentiate the two wild species, guanaco and vicuña. These results show the value of combining database search and untargeted metabolomic approaches for paleoproteomics, and reveal for the first time the potential of molecular networks to highlight deamidation related to diagenesis and cluster highly similar peptides related to interchain homologies or intra- or inter-specific polymorphism. SIGNIFICANCE: This study used an innovative approach combining multivariate analysis of LC-MS data together with molecular networking and database-assisted de novo sequencing to identify taxonomic peptides in palaeoproteomics. It constitutes the first attempt to differentiate between hair fibres from the four South American camelids (SACs) based on proteomic analysis of modern and archaeological samples. It provides different proteomic signatures for each of the four SAC species and proposes new SAC taxonomic peptides of interest in archaeozoology and fraud control. SACs have been extensively exploited since human colonization of South America but have not been studied to the extent of their economic, cultural and heritage importance. Applied to the analysis of ancient Andean textiles, our results should permit a better understanding of cultural and pastoral practices in South America. The wild SACs are endangered by poaching and black-market sale of their fibre. For the first time, our results provide discriminant features for the determination of species of origin of contraband fibre.


Assuntos
Camelídeos Americanos , Cabelo , Proteômica , Animais , Análise Multivariada , América do Sul , Espectrometria de Massas em Tandem
10.
Front Microbiol ; 11: 586433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240239

RESUMO

An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.

11.
Sci Rep ; 10(1): 14427, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879376

RESUMO

The advent of domestication is a major step that transformed the subsistence strategies of past human societies. In Africa, domestic caprines (sheep and goat) were introduced in the north-eastern part of the continent from the Near East more than 9000 years ago. However, their diffusion southwards was slow. They are thought to have made their first appearance in the southern part of the continent ca. 2000 years ago, at a few Later Stone Age sites, including Leopard Cave (Erongo region, Namibia), which provided the oldest directly dated remains assigned to sheep or goat on the basis of morphology of bones and teeth. However, similarities in morphology, not only between these two domesticated caprine species, but also between them and the small wild antelopes, raised questions about the morphological species attribution of these remains. Additionally, the high fragmentation of the site's osteological remains makes it difficult to achieve species-level taxonomic identification by comparative anatomy. In this paper, we report molecular species identification of the Leopard Cave remains using palaeoproteomics, a method that uses protein markers in bone and tooth collagen to achieve taxonomic identification of archaeological remains. We also report new direct radiocarbon dates. Wild antelope remains from museum collections were used to enrich the available protein record and propose de novo type I collagen sequences. Our results demonstrate that the remains morphologically described as domesticates actually belong to a wild antelope species and that domestic caprines first appeared at Leopard Cave 1500 years later than previously thought. This study illustrates that the use of palaeoproteomics coupled with direct radiocarbon dates is particularly suited to complement classic zooarchaeological studies, in this case concerning the arrival of the first herding practices in arid environments.


Assuntos
Domesticação , Gado/genética , Proteômica/métodos , Animais , Antílopes/genética , Arqueologia/métodos , Evolução Biológica , Osso e Ossos/química , Colágeno/análise , Fósseis , Paleontologia/métodos , Datação Radiométrica/métodos , África do Sul , Dente/química
12.
Front Microbiol ; 11: 988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528437

RESUMO

Microcin J25 (MccJ25), a 21-amino acid bacteriocin produced by Escherichia coli (E. coli), is a potent inhibitor of Enterobacteriaceae, including pathogenic E. coli, Salmonella, and Shigella. Its lasso structure makes it highly stable and therefore of interest as a possible antimicrobial agent in foods or as an alternative to antibiotics in livestock production. In the present study, we aimed to evaluate in vitro the inhibitory activity of MccJ25 against Salmonella enterica subsp. enterica serovar Newport ATCC 6962 (Salmonella Newport) used as a model pathogen under conditions simulating those of the swine proximal colon. The growth inhibition activity of MccJ25 against Salmonella Newport was examined in lysogeny broth (LB) and in modified MacFarlane medium that allows miming the swine colonic conditions. The MccJ25 activity was further determined using the Polyfermentor intestinal model (PolyFermS), an in vitro continuous fermentation model that permits deciphering the activity of any antimicrobial molecule in real colon fermentation conditions using selected microbiota. It was set up here to simulate the porcine proximal colon fermentation. In these conditions, the inhibition activity of MccJ25 was compared to those of two antimicrobial agents, reuterin and rifampicin. The minimal inhibitory concentration (MIC) of MccJ25 was determined at 0.03 µM in LB medium, compared to 1,079 and 38 µM for reuterin and rifampicin, respectively, showing a significantly higher potency of MccJ25. Total inhibition of Salmonella Newport was observed in LB medium over 24 h of incubation at concentrations starting from the MIC. In the PolyFermS model, MccJ25 induced a significantly stronger inhibition of Salmonella Newport growth than reuterin or rifampicin. A specific and sensitive LC-MS method allowed to detect and quantify MccJ25 in the PolyFermS fermentation system, showing that MccJ25 remains stable and active against Salmonella in conditions mimicking those found in swine colon. This study paves the way for further exploring the potential of this bacteriocin as an alternative to antibiotics in livestock.

13.
Environ Microbiol ; 22(7): 2907-2920, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32363677

RESUMO

In livestock production, antibiotics are used to promote animal growth, control infections and thereby increase profitability. This practice has led to the emergence of multiresistant bacteria such as Salmonella, of which some serovars are disseminated in the environment. The objective of this study is to evaluate microcin J25 as an inhibitor of Salmonella enterica serovars of various origins including human, livestock and food. Among the 116 isolates tested, 37 (31.8%) were found resistant to at least one antibiotic, and 28 were multiresistant with 19 expressing the penta-resistant phenotype ACSSuT. Microcin J25 inhibited all isolates, with minimal inhibitory concentration values ranging from 0.06 µg/ml (28.4 nM) to 400 µg/ml (189 µM). Interestingly, no cross-resistance was found between microcin J25 and antibiotics. Multiple sequence alignments of genes encoding for the different proteins involved in the recognition and transport of microcin J25 showed that only ferric-hydroxamate uptake is an essential determinant for susceptibility of S. enterica to microcin J25. Examination of Salmonella strains exposed to microcin J25 by transmission electronic microscopy showed for the first-time involvement of a pore formation mechanism. Microcin J25 was a strong inhibitor of several multiresistant isolates of Salmonella and may have a great potential as an alternative to antibiotics.


Assuntos
Bacteriocinas/farmacologia , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Genômica , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Fenômica , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/ultraestrutura
14.
Struct Dyn ; 6(5): 054307, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31700943

RESUMO

Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarization of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130 Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomer concentration changes of an azopeptide after a photoisomerization. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterization of biological processes, such as protein folding and protein-ligand binding.

15.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624160

RESUMO

Here, we present the genome sequences of four Microbacterium strains, which were isolated at different locations in Europe from metal- or radionuclide-rich soils. High-quality complete genome sequences were obtained with PacBio and Illumina data sets with an original two-step procedure.

16.
J Am Soc Mass Spectrom ; 30(6): 1038-1045, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30834511

RESUMO

Microcin J25 is a ribosomal synthesized and post-translationally modified peptide (RiPP) characterized by a mechanically interlocked topology called the lasso fold. This structure provides microcin J25 a potent antimicrobial activity resulting from internalization via the siderophore receptor FhuA and further inhibition of the RNA polymerase. In the present work, nuclear magnetic resonance (NMR) and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) were used to investigate the lasso structure of microcin J25. NMR experiments showed that the lasso peptide microcin J25 can adopt conformational states where Pro16 can be found in the cis- and trans-orientations. The high-resolution mobility analysis, aided by site-directed mutagenesis ([P7A], [P16A], and [P7A/P16A] variants), demonstrated that microcin J25 can adopt cis/cis-, cis/trans-, trans/cis-, and trans/trans-conformations at the Pro7 and Pro16 peptide bonds. It was also shown that interconversion between the conformers can occur as a function of the starting solvent conditions and ion heating (collision-induced activation, CIA) despite the lasso topology. Complementary to NMR findings, the cis-conformations at Pro7 were assigned using TIMS-MS. This study highlights the analytical power of TIMS-MS and site-directed mutagenesis for the study of biological systems with large micro-heterogeneity as a way to further increase our understanding of the receptor-binding dynamics and biological activity.

17.
Anal Bioanal Chem ; 411(24): 6287-6296, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30707269

RESUMO

Lasso peptides are a class of bioactive ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked topology, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. BI-32169 is a class III lasso peptide containing one disulfide bond that further stabilizes the lasso structure. In contrast to its branched-cyclic analog, BI-32169 has higher stability and is known to exert a potent inhibitory activity against the human glucagon receptor. In the present work, tandem mass spectrometry, using collision-induced dissociation (CID) and electron capture dissociation (ECD), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) experiments were carried out to evidence specific structural signatures of the two topologies. CID experiments showed similar fragmentation patterns for the two topoisomers, where a part of the C-terminal tail remains covalently linked to the macrolactam ring by the disulfide bond, which cannot clearly constitute a signature of the lasso topology. ECD experiments of BI-32169 showed an increase of hydrogen migration events in the loop region when compared with those of its branched-cyclic topoisomer evidencing specific structural signatures for the lasso topology. The high mobility resolving power of TIMS resulted in the identification of multiple conformations for the protonated species but did not allow the clear differentiation of the two topologies in mixture. When in complex with cesium metal ions, a reduced number of conformations led to a clear identification of the two structures. Experiments reducing and alkylating the disulfide bond of BI-32169 showed that the lasso structure is preserved and heat stable and the associated conformational changes provide new insights about the role of the disulfide bond in the inhibitory activity against the human glucagon receptor. Graphical abstract ᅟ.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Peptídeos Cíclicos/química , Isoformas de Proteínas/química , Espectrometria de Massas em Tandem/métodos , Conformação Proteica
18.
Front Microbiol ; 9: 1764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123205

RESUMO

The bacteriocin microcin J25 (MccJ25) inhibits the growth of Gram-negative pathogens including Salmonella and Shigella species, and Escherichia coli. This 21-amino acid peptide has remarkable stability to heat and extreme pH values and resistance to many proteases, thanks to a characteristic lasso structure. In this study, we used the dynamic simulator TIM-1 as gastro-intestinal tract model to evaluate the stability and antibacterial activity of MccJ25 during passage through the proximal portion of the human gastrointestinal tract. MccJ25 concentration was measured in the different simulator sections by HPLC, and inhibition of Salmonella enterica serotype Enteritidis was evaluated using qualitative and quantitative assays. LC-MS/MS analysis and subsequent molecular networking analysis on the Global Natural Product Social Molecular Networking platform (GNPS) and analysis of the peptide degradation in the presence of proteolytic enzymes mimicking the gastro-intestinal conditions permitted to delineate the fate of MccJ25 through identification of the main degradation products. MccJ25 was relatively stable under gastric conditions, but degraded rapidly in the compartment mimicking the duodenum, notably in the presence of pancreatin. Among pancreatin components, elastase I appeared primarily responsible for MccJ25 breakdown, while α-chymotrypsin was less efficient.

19.
Sci Rep ; 8(1): 9029, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899567

RESUMO

The antimicrobial peptide pediocin PA-1 is a class IIa bacteriocin that inhibits several clinically relevant pathogens including Listeria spp. Here we report the synthesis and characterization of whole pediocin PA-1 and novel analogs thereof using a combination of solid- and solution-phase strategies to overcome difficulties due to instability and undesired reactions. Pediocin PA-1 thus synthesized was a potent inhibitor of Listeria monocytogenes (MIC = 6.8 nM), similar to the bacteriocin produced naturally by Pediococcus acidilactici. Of particular interest is that linear analogs lacking both of the disulfide bridges characterizing pediocin PA-1 were as potent. One linear analog was also a strong inhibitor of Clostridium perfringens, another important food-borne pathogen. These results are discussed in light of conformational information derived from circular dichroism, solution NMR spectroscopy and structure-activity relationship studies.


Assuntos
Anti-Infecciosos/farmacologia , Bacteriocinas/farmacologia , Pediocinas/farmacologia , Relação Estrutura-Atividade , Sequência de Aminoácidos , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Bacteriocinas/química , Clostridium perfringens/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana/métodos , Modelos Químicos , Modelos Moleculares , Pediocinas/síntese química , Pediocinas/química , Conformação Proteica
20.
Analyst ; 143(10): 2323-2333, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29721555

RESUMO

Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change. In the present work, we examined the influence of alkali (Na, K and Cs), alkaline earth (Mg and Ca) and transition (Co, Ni and Zn) metal ions on the conformational space and analytical separation of mechanically interlocked lasso peptides. Syanodin I, sphingonodin I, caulonodin III and microcin J25, selected as models of lasso peptides, and their respective branched-cyclic topoisomers were submitted to native nESI trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high mobility resolving power of TIMS permitted to group conformational families regardless of the metal ion. The lower diversity of conformational families for syanodin I as compared to the other lasso peptides supports that syanodin I probably forms tighter binding interactions with metal ions limiting their conformational space in the gas-phase. Conversely, the higher diversity of conformational families for the branched-cyclic topologies further supports that the metal ions probably interact with a higher number of electronegative groups arising from the fully unconstraint C-terminal part. A correlation between the lengths of the loop and the C-terminal tail with the conformational space of lasso peptides becomes apparent upon addition of metal ions. It was shown that the threaded C-terminal region in lasso peptides allows only for distinct interactions of the metal ion with either residues in the loop or tail region. This limits the size of the interacting region and apparently leads to a bias of metal ion binding in either the loop or tail region, depending whichever section is larger in the respective lasso peptide. For branched-cyclic peptides, the non-restricted C-terminal tail allows metal coordination by residues throughout this region, which can result in gas-phase structures that are sometimes even more compact than the lasso peptides. The high TIMS resolution also resulted in the separation of almost all lasso and branched-cyclic topoisomer metal ions (r ∼ 2.1 on average). It is also shown that the metal incorporation (e.g., doubly cesiated species) can lead to the formation of a simplified IMS pattern (or preferential conformers), which results in baseline analytical separation and discrimination between lasso and branched-cyclic topologies using TIMS-MS.


Assuntos
Metais/química , Peptídeos/química , Estrutura Secundária de Proteína , Íons , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...